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Abstract

Key message This article used seven characters from
the 2D image analysis to dissect the genetic architecture
underlying rice grain shape in one japonica x indica
population consisting of 215 recombinant inbred lines.
Abstract Two-dimensional (2D) digital image analysis is
efficient for investigating the rice grain shape characters in
large genetic and breeding populations. In this study, we
used 2D image analysis to investigate seven characters,
i.e., grain length (GL), grain width (GW), length-to-width
ratio (LW), grain area (GA), grain circumference (GC),
grain diameter (GD), and grain roundness (GR), in one
Jjaponica x indica genetic population consisting of 215
recombinant inbred lines. GL and GW can be recorded
manually as well, and have been extensively used together
with LW (i.e., GL/GW) in genetic studies on grain shape.
GC and GA can be hardly measured manually, and have
not been used together with GD and GR. Results indicated
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that the seven characters could be precisely measured by
2D image analysis, genotype by environment interaction
was low, and heritability was high. Each character was
controlled by a few major stable genes and multiple minor
additive genes. A total of 51 QTL were detected for the
seven characters across four diverse environments, 22 from
GL, GW, and LW, the three traditional characters, and 29
from the other four characters. The 51 QTL were clustered
in eighteen marker intervals. Comparing with previous
studies and analyzing the stability of identified QTL, we
found six non-reported marker intervals, one each on chro-
mosomes 2 and 3, and two each on chromosomes 6 and 8.
The newly identified loci and the large-scale phenotyping
system would greatly improve our knowledge about the
genetic architecture and the future rice breeding on grain
shape.

Introduction

Rice (Oryza sativa L.) is a seed-eating cereal crop, and
therefore grain shape is a vital appearance quality trait.
In addition, rice grain shape is also a key determinant on
grain yield (Huang et al. 2013). In genetics, grain shape
has been widely accepted as a complex trait controlled by
multiple genes with small effects. By phenotyping, it is
complex because it could be evaluated in different ways.
In conventional rice genetic study and breeding, grain
shape is characterized by grain length (GL), grain width
(GW), and the length-to-width ratio (LW), which greatly
affect grain yield, grain appearance quality, and market-
ability (Wan et al. 2005; Fan et al. 2006). As a result, lots
of QTL have been detected in the past two decades for the
three characters relevant to grain shape (Xing et al. 2000;
Tan et al. 2000; Li et al. 2003, 2004; Aluko et al. 2004;
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Wan et al. 2005; Bai et al. 2010; Shao et al. 2010; Huang
et al. 2013).

Based on QTL identified with relatively large phe-
notypic effects, some genes related to grain shape have
been isolated and cloned in rice, such as GW2 (Song et al.
2007), gw5/qSWS5 (Shomura et al. 2008; Weng et al. 2008;
Wan et al. 2008), GIF1/OsCIN2 (Wang et al. 2008, 2010),
srs-3 (Tanabe et al. 2007; Kitagawa et al. 2010), GS5 (Yu
et al. 1997; Li et al. 2000, 2011), GS3 (Fan et al. 2006;
Takano-Kai et al. 2009, 2011; Mao et al. 2010; Wang et al.
2011), gGWS8/OsSPL16 (Wang et al. 2012a, b), SGI (Nak-
agawa et al. 2012), and DEP1/qPE9-1 (Yan et al. 2007,
Zhou et al. 2009; Huang et al. 2009; Yi et al. 2011; Tagu-
chi-Shiobara et al. 2011; Sun et al. 2014). Positive regula-
tor PGLI and PGL2 were found in the network of grain
shape genes (Heang and Sassa 2012a, b), and the relation-
ship of four grain shape genes GS3, GW2, gw5/qSWS5,
and GIFI has been studied (Yan et al. 2011). However,
the gene-to-trait pathway and relationship between genes
identified by different characters are largely unknown
(Huang et al. 2013).

Conventionally, the evaluation of grain shape is per-
formed manually. In case of heavy workloads, long oper-
ating time, and short of experience, the manual measure-
ment is less efficient and error-prone. Any mistakes in data
collection may lead to incorrect and misleading results
in genetic study and rice breeding. For this reason, more
experienced workers and supervisors are needed to fre-
quently check and verify the data to avoid the mistake.
But subjective errors are still inevitable especially when
the workers are at fatigue. Automated assessment of plant
phenotypes is ideal and essential in the situation of large
genetic and breeding populations. Recently, the two-dimen-
sional (2D) digital image analysis has become available for
the high-throughput phenotyping on traits like shoot bio-
mass, yield and yield components, and grain shape (Yang
et al. 2013). Taking grain shape for an example, the system
can investigate more characters than GL, GW, and LW in
much shorter time. However, the relationship between the
conventional and novel 2D characters on grain shape is not
clear. Genetic study on 2D grain shape characters is still
lacking.

Our objectives in this study were (1) to investigate three
conventional and four novel characters on grain shape in
one japonica X indica genetic population by the 2D image
analysis; (2) to study the relationship between the seven
characters on grain shape; (3) to identify the genetic archi-
tecture and common stable QTL on grain shape measured
by the seven characters; and (4) to discover novel QTL on
grain shape which may contribute to future rice quality
breeding.
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Materials and methods
Population development and genotyping

Two parents of the genetic population used in this study are
Oryza sativa ssp. japonica cv. Asominori and Oryza sativa
ssp. indica cv. IR24. They were planted and the cross was
firstly made in the 2007 summer season in the experimental
field of Nanjing Agricultural University, Jiangsu Province,
China. Their F, hybrids were planted in the 2007 winter
season in Sanya, Hainan Province, China, and more than
500 F, seeds were harvested at maturity. The following
generations were alternatively planted in the previous two
locations till F,,, when no visual segregation was observed
within each line in the field. Single seed descent was
applied for generation advance during the repeated selfing
process. At the end, a total of 215 recombinant inbred lines
(RILs) were retained, and each RIL can be traced back to
an individual plant in the F, generation.

DNA of each F,, RIL was isolated and extracted for
genotyping. DNA extraction was carried out according to
the procedure described by Dellaporta et al. (1983). The
polymerase chain reaction (PCR) was performed using the
procedure of Chen et al. (1997), with minor modifications.
The protocol of PCR was briefly described as follows. The
template DNA was subjected to denaturation at 94 °C for
5 min, followed by 32 cycles of PCR amplification (dena-
turation at 94 °C for 1 min, primer annealing at 48-55 °C
for 30 s, and primer extension at 72 °C for 1 min) and a
final extension at 72 °C for 5 min. The PCR products were
separated through electrophoresis on an 8 % non-denatur-
ing polyacrylamide gel and detected using the silver stain-
ing method of Sanguinetti et al. (1994). A total of 933
pairs published SSR markers (McCouch et al. 2002) were
firstly screened for Asominori and IR24, and 313 markers
(33.55 %) showed polymorphism between the two parents.
Referring to the rice consensus map (McCouch et al. 2002),
we selected 143 evenly distributed markers to screen the
215 RILs.

Field experiments and trait measurement

The 215 RILs and their parents were grown from May
to November, 2013 in four geologically and ecologi-
cally diverse locations in China, i.e., Guilin (24.18°N,
109.45°E), Guiyang (26.35°N, 106.42°E), Nanchang
(28.38°N, 116.24°E), and Nanjing (31.95°N, 119.16°E).
The four locations have rice as the major cultivated and
consumed crop. A randomized complete block design was
applied with two replications at each location. Each entry
plot consisted of four rows, and each row was cultivated
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with ten individual plants. Field managements during the
growing season were similar to those adopted by local
farmers. Three representative individual plants in the cen-
tral part of each plot were used to measure various grain
traits. Grains of the selected plants were harvested and air-
dried, and then stored at the room temperature for at least
3 months before trait measurement or investigation.

Seven grain shape characters were evaluated by SC-G
rice grain appearance quality image analysis system devel-
oped by Hangzhou WSeen Detection Technology Co., Ltd,
China. Firstly, all filled grains from each selected rice plant
were divided into a number of samples, each having more
or less 1000 grains (about ~25 g). Each sample was spread
as even as possible on one 21.00 cm x 30.00 cm flat-bed
surface to be photographed. The grain image was acquired
by an Eloam high-speed photographic apparatus SS00A3B
with a resolution of 4800 x 2400 x 24 bits. The image
analysis system is able to distinguish individual grains
when they are randomly spread on the flat-bed surface. It
can distinguish individuals even when some grains are
overlapped (Zhong et al. 2009).

Grain length (GL), grain width (GW), grain circumfer-
ence (GC), and grain area (GA) were firstly deduced from
pixel number on the projected image. GL is defined as the
maximum Euclidean distance between two boundary points
of the grain, and GW is defined as the maximum length of
straight lines perpendicular to the line of GL. Grain length-
to-width ratio (LW) is equal to the ratio of GL and GW.
Grain diameter (GD) is equal to the diameter of a cycle that
has an area equal to GA, i.e., GD = \/4 x GA/r. Fitting
a rice grain image as an ellipse that has the same area, and
uniform distribution of points bounded by the perimeter of
the profile of grain image, the grain roundness is calculated
by GR = 4 x GA where major axis is largest dis-

7 X (major axis)2’ . R
tance between antipodal points on the fitted ellipse.

Phenotypic data analysis

ANOVA was used to test the statistical significance of vari-
ous sources of variation. In the combined ANOVA across
the four locations, phenotype was partitioned into over-
all mean, replication (i.e., block) effect per environment,
genotypic effect, environment effect, genotype by environ-
ment (GE) effect, and random error effect. Let y;; be the
observed value of a trait in interest for the ith RIL in the kth
replication in the jth environment (equivalent to location in
this study). The linear model used in ANOVA is therefore,

Yijk = &+ Rijj + Gi + Ej + GEjj + gk, and g ~ N(O, 0'82)
(H
where i = 1, 2, ..., n (n = 215 in this study), j = 1, 2, ...,
e (e =4 in this study), k = 1, 2, ..., r (r = 2 in this study),
w is overall mean of the RIL population, R, is the kth

replication effect in the jth environment, G; is genotypic
effect of the ith RIL, Ej is environmental effect of the jth
environment, GEU is interaction effect between the ith RIL
and jth environment, and Eijk is random error effect which
was assumed to be normally distributed with a mean of
zero. Once the linear model of ANOVA is defined, total
degree of freedom and total sum square can be partitioned
into the components defined in the linear model, from
which mean square (MS) of each source of variation can be
calculated, and the significance test can be conducted.

Heritability is a useful genetic parameter. In the broad
sense, heritability is the proportion of genetic variance
compared with phenotypic variance. From the theoretical
expectation of MS, genetic variance (ocz;), interaction vari-
ance (02z), and error variance (o) can be estimated by
the following equations, where e = 4 and r = 2 in this
study.

o2 = (MSg — MS,),

e XxXr

1
op = ;(MSGE — MS,), and 6> = MS, )

It is generally agreed that environmental variance should
not be included in the calculation of heritability (Holland
et al. 2003). Phenotypic variance per plot in multi-envi-
ronmental trials can be written as o3 = 0 + 02 + 07
. Therefore, the phenotypic variance on the mean perfor-
mance across replications and environments can be written
as a)% = 6(2; + 56(2;15 + 817082. Heritability on the plot level
and heritability on the mean performance of each RIL in
the genetic population can be estimated from the following

two equations, respectively.

2 2
o o
H}% = —CZ; = 2G 5 and
op  0GTOoGe T O;
T o2 3)
P~ 27 2,12 [
o5 oG+ EO'GE-I— 27 0¢

Genotypic variance is the same in calculating the two
levels of heritability, but phenotypic variance is reduced
in the mean performance across environments and repli-
cations. Obviously, heritability has a higher value on phe-
notypic mean. The method previously described has been
implemented in tool “ANOVA” in the QTL IciMapping
software (Meng et al. 2015).

Genotypic data analysis

Genetic linkage map construction and QTL mapping were
conducted in the QTL IciMapping software (Meng et al.
2015), which is public and freely available (http:/www.
isbreeding.net/software/). For map construction, physical
positions of SSR markers were used in grouping as anchor
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Fig. 1 Frequency distribution of the seven characters on rice grain
shape in the RIL population grown in four environments. Aso and
IR24 at the top of each histogram represented the two parents Oryza
sativa ssp. japonica cv. Asominori and Oryza sativa ssp. indica cv.

information. Algorithm nnTwoOpt was used to acquire the
preliminary order and positions of linked markers, where
the nearest neighbor was used to construct an initial order
and the two-opt algorithm in solving traveling salesman
problems was used to improve the marker order. Rippling
algorithm at a window size of 8 markers was used to fine-
tune the linkage map with the objective to minimize the sum
of adjacent recombination frequencies on each linkage map.

Inclusive Composite Interval Mapping, known as
ICIM (Li et al. 2007; Wang 2009), was used for QTL
identification. LOD threshold was obtained on a total
of 7000 permutation tests for the seven characters and
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IR24, respectively. GL grain length, GW grain width, LW grain
length-to-width ratio, GC grain circumference, GA grain area, GD
grain diameter, and GR grain roundness

a genome-wide type I error rate at 0.05. Probabilities
for entering and leaving variables were set at 0.001 and
0.002, respectively, in the stepwise regression aiming
to determine the linear relationship between phenotype
and marker type. This linear model was then used for
background genetic variation control in ICIM QTL map-
ping. The scanning step was set at 1 cM across the 12
rice chromosomes. A peak in a marker interval along the
LOD profile was treated as a QTL, if there is at least one
environment with the peak value higher than the LOD
threshold. The identified QTL was named according to
McCouch et al. (1997).
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Table 1 Correlation coefficient between the seven characters on rice grain shape across the four locations

Character GL GW LW GC GA GD GR
GL 1.000

GW —0.238%* 1.000

LW 0.777%* —0.790%* 1.000

GC 0.985°%* —0.078* 0.666%* 1.000

GA 0.687%* 0.5297%%* 0.083* 0.793%%* 1.000

GD 0.9317%* 0.124%#: 0.501%*%* 0.974%%* 0.894%* 1.000

GR —0.771%* 0.7937%:* —0.986%* —0.657%* —0.087* —0.494% 1.000

GL grain length, GW grain width, LW grain length-to-width ratio, GC grain circumference, GA grain area, GD grain diameter, and GR grain

roundness

*, ** Significance at the level of 0.05 and 0.01, respectively

Results
Phenotypic distribution, correlation, and ANOVA

Phenotypic frequency distributions of the seven characters
in the RIL population and four environments are shown in
Fig. 1. Difference between the two parents varies by envi-
ronment. But, IR24 has consistently greater values on GL,
LW, GC, and GD, and Asominori has consistently greater
values on GW, GA, and GR in all environments, indicat-
ing that the investigated characters may have high stabil-
ity across environments. In the RIL population, transgres-
sive segregation at both directions can be observed, but the
transgressive level is different from the seven characters
(Fig. 1). Higher level of transgressive segregation can be
found from GL, GA, and GD.

For the seven characters, similar correlation coeffi-
cients were observed in the four environments (Table S1).
Coefficients calculated from the phenotypic mean of each
RIL across the four environments and two replications are
shown in Table 1. Correlation coefficients are close to or
>0.9 between GL and GC, GL and GD, GC and GD, and
GA and GD (Table 1). This is understandable when think-
ing longer rice grain is always larger in grain size. GL,
GC, GD, and GA reflect size of the rice grain in different
ways, and one cannot be replaced by the other one. LW
and GR have a correlation coefficient close to —1, indi-
cating they measured grain shape in two opposite ways.
When the 2D image of rice grain can be approximated
by an ellipse, LW is actually ratio of long axis over short
axis, and GR is ratio of short axis over long axis. This
explains the highly negative correlation between LW and
GR.

For each character, ANOVA combining the four envi-
ronments showed that there were significant variations
from the four environments, the two replications (or two
blocks) per environment, the 215 genotypes, and the
genotype by environment (GE) interactions (Table S2).

Significance from the two replications in the four environ-
ments indicated that the block effect should be considered
in the ANOVA linear model in Eq. (1) in order to reduce
the random error, which actually represents one of the
three basic principles in field experimental design. Four
components of variance calculated by Eq. (2) and herit-
ability in the broad sense calculated by Eq. (3) are shown
in Table 2. Obviously, environment and GE interaction had
much lower variances, compared with genotype, indicating
that genotypic variation was the major part in the observed
phenotypic variation for the seven characters. By plot, the
characters had the heritability around 0.9 (Table 2). Much
less GE interactions and random errors were included in
the phenotypic mean across environments and replications.
Therefore, the heritability was increased when estimated
by the phenotypic mean (Table 2). High heritability was
also found in other studies, for example see Huang et al.
2013.

Parental contribution, marker distortion, and linkage
maps

Parental contribution is the proportion of the genome con-
tributed by a parent to its progeny (Wang and Bernardo
2000). In RIL populations, each line is homozygous, and
genotypic frequency is equivalent to gene (or allele) fre-
quency at each locus. Therefore, for each of the 215 RILs,
parental contribution from Asominori can be calculated
by the proportion of Asominori marker type to the total
marker number. Among the 215 RlILs, it can be seen from
Fig. 2 that Asominori had a contribution between 35 and
65 % to 156 (or 72.56 %) lines. There were 9 (or 4.19 %)
RILs where Asominori had a contribution below 25 %, and
9 (or 4.19 %) RILs where Asominori had a contribution
above 85 %. As single seed descent was strictly applied
during the repeated selfing in developing the RIL popula-
tion, the great variation on parental contribution observed
in Fig. 2 may come from the random genetic drift,
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Table 2 Variance components and heritability for the seven characters on rice grain shape estimated in the RIL population

Character Variance components Heritability
Environment Genotype G by E interaction Random error Plot level Genotypic mean level

GL 0.0138 0.3501 0.0139 0.0111 0.9334 0.9944
GW 0.0006 0.0452 0.0021 0.0026 0.9073 0.9918
LW 0.0038 0.1255 0.0039 0.0040 0.9403 0.9989
GC 0.0623 1.4858 0.0648 0.0542 0.9258 0.9924
GA 0.0423 2.4288 0.1637 0.1579 0.8830 0.9838
GD 0.0035 0.0824 0.0049 0.0046 0.8971 0.9885
GR 0.0001 0.0022 0.0001 0.0001 0.9448 0.9954

GL grain length, GW grain width, LW grain length-to-width ratio, GC grain circumference, GA grain area, GD grain diameter, and GR grain

roundness

which can be hardly controlled in breeding and genetic
populations.

Regarding the 143 SSR markers, two alleles at each
locus should be fitted by the 1:1 Mendelian ratio if there is
no segregation distortion in the RIL population, i.e., each
allele has the expected frequency of 0.5. Observed fre-
quency of the allele from Asominori and the segregation
distortion test are shown in Fig. 3. Allele frequencies at
the 143 marker loci ranged from 0.2372 to 0.6558 (upper
Fig. 3), and the average was 0.4722. When the significance
level of 0.001 was applied, a total of 31 markers were iden-
tified to have segregation distortion, 4 markers on chromo-
some 1, 6 on chromosome 3, 2 on chromosome 4, 8 on
chromosome 6, 2 on chromosome 9, 9 on chromosome 11,
and 2 on chromosome 12 (lower Fig. 3).

Linkage maps of the 143 SSR markers constructed
from the RIL population had a total length of 1474.31 cM
(Fig. 4). Map length of two adjacent markers ranged from
0.24 to 32.09 cM, with an average of 10.31 cM. There were
83 marker intervals (or 58.04 %) shorter than 10 cM, and

80 17
70 A
60
50
40 A

30

Number of RILs

20

10 1

10 20 30 40 50 60 70 8 90 >95
Parental contribution from Asominori

Fig. 2 Frequency distribution of the genetic contribution from par-
ent Oryza sativa spp. japonica cv. Asominori to each line in the RIL
population
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6 intervals (or 4.20 %) longer than 25 cM. Larger gaps
were observed on chromosomes 1 to 5 and 11, and markers
were relatively evenly distributed on other chromosomes
(Fig. 4).

QTL identified for the seven characters

A LOD threshold of 2.65 estimated from 7000 times
of permutation test was used in QTL mapping for the
seven characters. Seven QTL were detected for GL on
four chromosomes (Table 3). qGL2-1 and qGL3-1 were
detected with positive additive effects in four environ-
ments (Table 3), indicating the allele from IR24 increased
GL. qGL2-1 had the LOD score from 2.78 to 6.31, and
explained 4.46-9.65 % of the variation on phenotypic mean
in each environment. qGL3-1 had the highest LOD scores
and explained about 50 % of the variation. Three QTL
were detected in three environments, among which qGL2-2
and qGL3-2 had negative effects and qGL8-2 had positive
effects (Table 3). QTL not significant in all environments
also showed peaks in non-significant environments, and the
additive effects were at the same direction as those in the
significant environments.

Seven QTL were detected for GW (Table 4). qGW3-1
and qGWS5 were detected with negative additive effects in
four environments (Table 4). qGL3-1 had the LOD score
from 3.03 to 4.38, explaining 5.19-7.07 % of the varia-
tion on phenotypic mean in each environment. qGLS had
the highest LOD scores and explained about 20 % of the
variation.

Eight QTL were detected for LW (Table 5). qLW3 and
gLW5 were detected with positive additive effects in four
environments (Table 5). gLW3 had the highest LOD score
and explained about 30 % of the variation in each envi-
ronment. qLWS5 had the LOD score from 15.40 to 17.33,
and explained 13.88-31.71 % of the variation. gLW2-2
was detected in three environments with positive additive
effects (Table 5).
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Fig. 3 Frequency of the allele from Oryza sativa spp. japonica cv. Asominori (upper) and the segregation distortion test (lower) in the RIL

population at each marker locus

Six QTL were detected for GC (Table 6). qGC3-1 and
qGC8 were detected with positive additive effects in four
environments (Table 6). qGC3-1 had the highest LOD
score and explained about 50 % of the variation in each
environment. ¢GC8 had the LOD score from 3.87 to 6.80,
and explained 4.06-7.10 % of the variation.

Ten QTL were detected for GA (Table 7). qGA3-1 and
qGAS were both detected in four environments, but one
had positive additive effect and the other had negative effect
(Table 7). qGA3-1 had the LOD score from 8.59 to 17.31,
and explained 15.21-30.27 % of the variation in each envi-
ronment. qGAS5 had the LOD score from 5.20 to 11.29, and
explained 8.58-12.44 % of the variation. Three QTL were
detected in three environments, among which qGA2-2 and
qGA3-2 had negative additive effects, and qGL7 had posi-
tive additive effect (Table 7).

Six QTL were detected for GD (Table 8). Three QTL
on chromosomes 2, 3, and 8 were detected in four environ-
ments, two of which had positive additive effects and one of
which had negative effects in four environments (Table 8).

qGD2 had the LOD score from 4.48 to 9.34, and explained
6.04—12.74 % of the variation on phenotypic mean. qGD3-
1, had the highest LOD score and explained about 50 %
of the variation in each environment. qGD8 had the LOD
score from 2.92 to 6.98, and explained 5.50-8.33 % of the
variation.

Seven QTL were detected for GR (Table 9). qGR2-1,
qGR3, and qGRS were detected with negative effects
in four environments (Table 9). qGR3 had the highest
LOD scores from 18.93 to 25.25, and explained 28.58—
34.00 % of the variation on phenotypic mean in the four
environments. GRS had the LOD score from 12.23 to
18.87, and explained 14.88-17.67 % of the variation.
qGR2-2 was detected in three environments with nega-
tive effect, and the other three, i.e., qGR1, qGR4, and
qGRS, were detected in one environment (Table 9).
Due to the highly negative correlation, QTL from GR
and LW had effects at the opposite directions, but they
were almost identical by position, LOD score, and PVE
(Tables 5 and 9).
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Fig. 4 The genetic linkage map of 143 SSR markers constructed in the RIL population derived from Oryza sativa ssp. japonica cv. Asominori

and Oryza sativa ssp. indica cv. IR24

Potentially novel loci harboring QTL on grain shape

Combining mapping results of the seven characters
(Tables 3, 4, 5, 6, 7, 8, and 9), we identified a total of 51
QTL which may affect the grain shape in various ways.
Those loci were indicated by arrows on the LOD pro-
files shown in Fig. 5. However, due to high correlations
between the seven characters (Table 1), it is highly likely
that some loci have pleiotropic effects on several charac-
ters, and therefore the identified loci may not represent 51
totally different chromosomal locations. For examples, at
similar position of qGL2-2, QTL was also detected for GC,
GA, and GD, i.e., qGC2-2, qGA2-2, and qGD2 (Fig. 5).
At similar position of qGL3-1, QTL was also detected

@ Springer

for the other six characters, i.e., qGW3-1, qLW3, qGC3-
1, qGA3-1, qGD3-,1 and qGR3 (Fig. 5). At similar posi-
tion of qGWS5, QTL was also detected for LW, GA, GD,
and GR, i.e., qLW5, qGAS5, qGDS5, and qGRS5 (Fig. 5). At
similar position of qGL8-2, QTL was also detected for GC,
GA, and GD, i.e., qGC8, qGAS, and qGD8 (Fig. 5). Each
of the four chromosomal locations likely has pleiotropic
effects on multiple characters, rather than closely linked
loci affecting individual characters.

From Tables 3, 4, 5, 6, 7, 8, and 9 and the joint QTL
mapping of four environments (results not shown), the 51
QTL were roughly clustered into 18 marker intervals on
the first ten rice chromosomes (Table 10). Genes/QTL have
been previously reported on 12 intervals but have not been
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Table 6 QTL of grain shape identified by grain circumference (GC) in the four environments

Nanjing (31.95°N, 119.16°E)

Guiyang (26.35°N, 106.42°E) Nanchang (28.38°N, 116.24°E)

Guilin (24.18°N, 109.45°E)

Right

Left

Chr.

QTL®

Pos® LOD® PVE (%)® Add®

PVE (%) Add®

LOD¢

Pos.’

PVE (%) Add®

PVE (%) Add® Pos LOD®

LOD¢

Pos.’

marker

marker

0.28
—0.19

4.92
2.16

2.33

1.55

2648 5231

89
140
111
163

0.29
—0.33

5.36
6.97
54.09
5.70

3.36
5.65
31.53
5.87
1.88
6.80

90
140
111
163

0.28
—0.36

5.06
8.32
51.29

3.10
7.07
28.37

86
141

0.20
—0.40

1.48 246

7.76

89
140
113
163

RM262

2 RM29
RM6

qGC2-1
qGC22 2

92

RM425

0.92
—-0.32

0.91
—0.30

0.88
-0.17

113
163

0.90
—-0.32

27.50 48.83
5.86
3.98
6.15

RM7097

3 RM411

qGC3-1
qGC3-2 3

6.12

517
241
4.20

1.94
5.87
4.06

2.05
5.24
3.87

6.09
4.33
6.81

RMS8269 RM448

RMS505

0.22

2.87
5.37

81
93

0.17

0.33

1.77
7.10

84
92

0.30
0.25

82
91

0.27
0.34

RM234 81

7
8

qGC7

=)
«@
=)

92

RM6948

RM502

qGC8

% A peak in a marker interval along the LOD profile was treated as a QTL, if there is at least one environment with the peak value higher than the LOD threshold

> Chromosomal position (cM) of the peak

¢ The number in bold was the value of a peak higher than the threshold value in the LOD profile

4 Percentage of the phenotypic variation explained by the locus at the peak position on the LOD profile

¢ Additive effect of the identified QTL. Positive additive effect indicated the allele from IR24 increased grain circumference, and the allele from Asominori decreased grain circumference.

Negative additive effect indicated the allele from IR24 decreased grain circumference, and the allele from Asominori increased grain circumference

and GD, but negatively with GW and GR (Table 1). Greater
GW will result in greater GA, GD, and GR, but smaller LW
and GC. Therefore, GW was positively correlated with GA,
GD, and GR, but negatively with LW and GC (Table 1).
LW and GR are reciprocal from each other, and a com-
pletely negative correlation was observed (Table 1).

We understand that the 2D image of a rice grain may not
completely be an ellipse, and therefore GL and GW may
not completely determine GC and GA, the two characters
which may most suitably represent size of the rice grain,
but are hardly measured manually. In this study, GL, GW,
GC, and GA were directly measured in the 2-D image sys-
tem. The system also output LW, GR, and GD, but LW was
actually calculated from GL and GW, and GD and GR were
calculated from GA.

Advantages of the 2D image analysis in measuring
grain shape

For manual measurement on grain shape, 10 or 20 filled
grains were randomly selected, and then lined up length-
wise (or widthwise) along a vernier caliper in order to
measure GL (or GW) (Table S3). Values of the filled grains
were then averaged and used in genetic studies. The 2D
image technology used in this study had advantages in
measuring more characters directly, allowing a more com-
plete description of the rice grain shape. The SC-G equip-
ment was objective and high throughput. It takes at least
5 min to measure GL and GW of 10-20 grains manually.
In comparison, SC-G can screen 800—1200 grains for the
seven characters in 5-10 s. Measuring a larger number of
grains from each RIL reduces the sampling errors associ-
ated with the phenotypic mean and therefore increases the
estimated heritability (Table 2). In addition, the measure-
ments from SC-G can be directly loaded into computer,
so that some artificial errors in recording and transferring
manual data can be greatly avoided. The image system is
highly efficient in investigating grain shape characters and
the WSeen product has been used in more than 300 insti-
tutes in China in recent 2 years.

In the 2D image system used in this study, GC and GA
were directly measured, in addition to GL and GW. LW,
GD, and GR were not directly measured, which may be
called mathematically derived traits (Wang et al. 2012a,
b). The use of such traits increased gene number, caused
higher-order gene interactions than observed in component
traits, and possibly complicated the linkage relationship
between QTL as well (Wang et al. 2012a, b). The increased
complexity of genetic architecture in derived traits may
reduce QTL detection power and increase false discovery
rate. Therefore, additional characters which can be directly
measured by the 2D image system, such as GC and GA,
may also contribute to more efficient and precise dissection
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Fig. 5 LOD profile of QTL mapping for the seven characters in four
environments. Each identified QTL was indicated by an arrow point-
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of the genetic architecture on grain shape. If GL and GW
can be viewed as one-dimensional (1D) characters, GC and
GA are 2D characters. Intuitively, 2D characters may bet-
ter describe the grain shape regarding the size and volume.
The 2D image analysis can not only facilitate the tradi-
tional genetic studies on 1D characters, it also allows the
genetic dissection of grain shape from directly measured
2D characters.

Genetic architecture on grain shape

Grain shape is complex by phenotyping, as there is no sin-
gle character which can completely quantify the shape of a
grain. It is complex by genetics, as there is no single gene
which can completely determine the shape of a grain. For-
tunately, there are some characters which are closely asso-
ciated with grain shape. These characters can be precisely
measured in large scale, and have low genotype by environ-
mental interactions, low random errors, high heritability,
and high correlation relationships (Tables 1 and 2). These
features explained why such a complex trait has received so
much attention in rice genetics studied in past two decades.

From the seven characters investigated in the 215 RILs,
a total of 51 QTL were identified to have additive effects
(Tables 3, 4, 5, 6, 7, 8, and 9). Major and minor loci both
exist. The major locus explained more than 20 %, while
the minor locus explained a few percentage of the pheno-
typic variation. The identified QTL have varied stabilities
across the four environments. Some were detected in four
environments, but some were detected in three, two, or just
one environment. Interestingly, QTL not significant in four
environments also showed peaks in non-significant envi-
ronments, and the additive effects were always at the same
direction as those in the significant environments. This may
represent another important feature of grain shape, i.e.,
there may not be cross-over GE interactions at the identi-
fied locus. Though each QTL has different effects in dif-
ferent environments, the difference will not change which
allele is favorable and which allele is unfavorable. This fea-
ture of grain shape was confirmed by the low GE interac-
tions from ANOVA (Table S2).

RIL populations are widely used in QTL mapping,
where each line is homozygous in genotype and can be
grown in multi-locations with replications for precision
phenotyping. Additive QTL can be mapped by one-dimen-
sional scanning, and additive by additive epistatic QTL can
be mapped by 2D scanning. No dominance and dominance-
associated epistasis can be studied in RIL populations. We
conducted epistatic mapping (Li et al. 2008) for the 215
RIL, but did not detect significant epistatic effects. Simi-
lar results have been reported in previous studies (Huang
et al. 2013). To summarize, grain shape can be precisely

@ Springer

measured by various 1D and 2D characters, GE interac-
tion is low, and heritability is high. It is controlled by a few
major stable genes and multiple minor additive genes.

Novelty of the six non-reported chromosomal intervals

The 51 QTL on the seven characters were clustered into 18
chromosomal intervals flanked by SSR markers (Table 10).
We went through previous literatures for QTL and genes
on grain shape, and compared with QTL identified in
this study by physical locations or associated markers
(Tables 10 and S3). Genes/QTL have been reported in 12
intervals but not yet in the other six intervals. Obviously,
intervals showing QTL from multiple characters and multi-
ple environments have been previously reported (Table 10).
But this is not always the case, for example see intervals
RM488-RM212 on chromosome 1, RM211-RM71 on
chromosome 2, RM5473-RM131 on chromosome 4,
RM136-RM6818 on chromosome 6, and RM333-RM590
on chromosome 10. We assume the six non-reported inter-
vals may harbor novel loci on grain shape, which are worth
of further investigations. Three most promising intervals
are RM1313-RM424 on chromosome 2, RM8269-RM448
on chromosome 3, and RM1235-RM6356 on chromosome
8, where QTL showed up for multiple characters and in
multiple environments.

Of course, we cannot exclude the possibility that some
of the 51 QTL may be false positives. This problem cannot
be solved in the current mapping population. In the mean-
time of developing the RIL population, we also developed
two-way chromosome segment substation lines (CSSLs).
We are using CSSLs to confirm QTL identified in the RIL
population.
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